Arc-transitive regular cyclic covers of the complete bipartite graph
نویسندگان
چکیده
Characterizing regular covers of edge-transitive or arc-transitive graphs is currently a hot topic in algebraic graph theory. In this paper, we will classify arctransitive regular cyclic covers of the complete bipartite graph Kp,p for each odd prime p. The classification consists of four infinite families of graphs. In particular, such covers exist for each odd prime p. The regular elementary abelian covers ofKp,p are considered in a sequel.
منابع مشابه
Locally 3-Arc-Transitive Regular Covers of Complete Bipartite Graphs
In this paper, locally 3-arc-transitive regular covers of complete bipartite graphs are studied, and results are obtained that apply to arbitrary covering transformation groups. In particular, methods are obtained for classifying the locally 3-arctransitive graphs with a prescribed covering transformation group, and these results are applied to classify the locally 3-arc-transitive regular cove...
متن کاملArc-Transitive Dihedral Regular Covers of Cubic Graphs
A regular covering projection is called dihedral or abelian if the covering transformation group is dihedral or abelian. A lot of work has been done with regard to the classification of arc-transitive abelian (or elementary abelian, or cyclic) covers of symmetric graphs. In this paper, we investigate arc-transitive dihedral regular covers of symmetric (arc-transitive) cubic graphs. In particula...
متن کاملArc-transitive abelian regular covers of the Heawood graph
In this sequel to the paper ‘Arc-transitive abelian regular covers of cubic graphs’, all arc-transitive abelian regular covers of the Heawood graph are found. These covers include graphs that are 1-arc-regular, and others that are 4-arc-regular (like the Heawood graph). Remarkably, also some of these covers are 2-arc-regular.
متن کاملHighly arc-transitive digraphs – counterexamples and structure∗
We resolve two problems of [Cameron, Praeger, and Wormald – Infinite highly arc transitive digraphs and universal covering digraphs, Combinatorica 1993]. First, we construct a locally finite highly arc-transitive digraph with universal reachability relation. Second, we provide constructions of 2-ended highly arc transitive digraphs where each ‘building block’ is a finite bipartite graph that is...
متن کاملConstructing even radius tightly attached half-arc-transitive graphs of valency four
A finite graph X is half-arc-transitive if its automorphism group is transitive on vertices and edges, but not on arcs. When X is tetravalent, the automorphism group induces an orientation on the edges and a cycle of X is called an alternating cycle if its consecutive edges in the cycle have opposite orientations. All alternating cycles of X have the same length and half of this length is calle...
متن کامل